Dehydration of transferrin receptor-positive sickle reticulocytes during continuous or cyclic deoxygenation: role of KCl cotransport and extracellular calcium.
نویسندگان
چکیده
The K+ efflux that mediates sickle-cell dehydration may occur through several pathways, including two with a high capacity for mediating rapid K+ loss, KCl cotransport and the Ca(2+)-dependent K+ channel [K(Ca2+)]. The rate and pathway of red blood cell (RBC) dehydration most likely depends on cell age and hemoglobin (Hb) composition, with the presence of HbF playing an important role. Oxygenated sickle RBCs have relatively stable cell volume during incubation in vitro, whereas deoxygenated cells become dehydrated, and therefore more dense, due to activation of one or more K+ efflux pathways. In this investigation, sickle RBCs were deoxygenated either continuously or in 15-minute cycles for 4 hours, and the density increases of very young, transferrin receptor-positive (TfR+) cells and the remaining TfR- cells were determined. The contribution of KCl cotransport was estimated by replacing Cl- with NO3-. K(Ca2+) was inhibited by removal of Ca2+ or addition of charybdotoxin (ChTX). For both continuous and cyclic deoxygenation, TfR+ cells had a greater density increase when compared with TfR- cells. The lower percentage of HbF found in the TfR+ population may contribute to this difference. With continuous deoxygenation, the density shift was decreased by inhibition of K(Ca2+), but not by inhibition of KCl cotransport. With cyclic deoxygenation, the density shift was decreased in an independent, additive manner by inhibition of both pathways. Thus, cyclic deoxygenation of sickle cells under these conditions appears to activate both K(Ca2+) and the KCl cotransporter.
منابع مشابه
Dehydration of mature and immature sickle red blood cells during fast oxygenation/deoxygenation cycles: role of KCl cotransport and extracellular calcium.
Sickle red blood cells (RBC) become dehydrated as a consequence of potassium loss. This process depends at least partly on deoxygenation and may be influenced by the presence of oxygenation/deoxygenation cycles and the frequency of cycling. In this study, sickle RBC were subjected to approximately 180 oxygenation/deoxygenation cycles during 4 hours to evaluate RBC dehydration with cycle periods...
متن کاملDehydration of Transferrin Receptor -Positive Sickle Reticulocytes During Continuous or Cyclic Deoxygenation: Role
The K+ efflux that mediates sickle-cell dehydration may occur through several pathways, including two with a high capacity for mediating rapid K+ loss, KCI cotransport and the Ca2+-dependent K’ channel [K(CaZ+)I. The rate and pathway of red blood cell (RBC) dehydration most likely depends on cell age and hemoglobin (Hb) composition, with the presence of HbF playing an important role. Oxygenated...
متن کاملThe formation of transferrin receptor-positive sickle reticulocytes with intermediate density is not determined by fetal hemoglobin content.
Erythrocyte dehydration is an important feature of sickle cell disease, leading to increased sickle hemoglobin polymerization and decreased red blood cell survival. Substantial in vivo dehydration appears to occur in reticulocytes or in an even younger subset of reticulocytes that are positive for transferrin receptor. Previous studies have suggested both sickling-dependent and sickling-indepen...
متن کاملDeoxygenation of sickle red blood cells stimulates KCl cotransport without affecting Na+/H+ exchange.
KCl cotransport activated by swelling of sickle red blood cells (SS RBC)is inhibited by deoxygenation. Yet recent studies found a Cl--dependent increase in sickle reticulocyte density with cyclic deoxygenation. This study sought to demonstrate cotransporter stimulation by deoxygenation of SS RBC in isotonic media with normal pH. Low-density SS RBC exhibited a Cl--dependent component of the deox...
متن کاملHow do sickle cells become dehydrated?
In sickle cell anemia, dehydrated erythrocytes (SS RBC) are involved in the propagation of the vasoocclusive process, which results in the most severe complication in sickle cell disease (e.g. stroke). Deoxygenation leads to red cell dehydration, and hence increases the rate of hemoglobin S (HbS) polymer formation, which subsequently sickles the cell and retards RBC transit through the microvas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 88 11 شماره
صفحات -
تاریخ انتشار 1996